>
Wash Post Editorial Board Turns Against Climate Agenda?!
One Year Ago I Predicted and Described in Detail Huge Mars AI Plans that Elon Musk Confirmed...
British Teachers To "Spot Misogyny" In Boys And Target Them For Reeducation
Democrats Refuse To Release Post-Mortem Of 2024 Election Loss, DNC Chair Says
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

An international team of scientists believes it has now overcome this hurdle through a new type of bonding architecture, resulting in an unprecedented battery charge/discharge efficiency in a lithium-sulfur battery that could keep a smartphone running for days.
"Ironically, a main challenge to mass adoption of lithium-sulfur batteries until now, has been that the storage capacity of sulfur electrode is so large that it cannot manage the resultant stress," Monash University's Dr Mahdokht Shaibani, study lead author, explains to New Atlas. "Instead it breaks apart, in the same way we might when placed under stress."
Shaibani tells us this is because the stress leads to the distortion of key components, namely the carbon matrix responsible for passing electrons to the insulating sulfur, and the polymer binder that holds those two materials together. The resulting breakdown of this connection causes a rapid deterioration in the battery's performance.
So Shaibani and a team of international collaborators started looking at new ways of holding it all together. Rather than using the binding material to form a dense network with little room to spare, she decided to "give the sulfur particles some space to breath!"