>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
We've actually been hearing a lot about "bioscaffolds" lately.
In a nutshell, they're three-dimensional pieces of biocompatible material that are implanted within the body, and that have a microstructure similar to that of the surrounding tissue. Over time, cells from that tissue migrate into the scaffold, colonizing it and reproducing. Eventually, they entirely replace the material, forming pure muscle, bone, cartilage or other tissue.
That said, pre-producing such bioscaffolds and then implanting them in muscle is quite challenging. With that in mind, scientists at the University of Connecticut developed a prototype handheld 3D printer to do the job.
It starts by depositing a gelatin-based hydrogel directly into the unwanted gap within the muscle. An integrated ultraviolet light causes that gel to cure into a bioscaffold made up of tiny muscle-like fibers, which readily adheres to the adjacent muscle tissue – no sutures are required. Muscle cells then move into the scaffolding.
In lab tests, the device proved to be effective at treating volumetric muscle loss injuries in mice.