>
The Pentagon Failed Its Audit Again. You Should Be Alarmed.
Cuban Crisis 2.0. What if 'Gerans' flew from Cuba?
Senate Democrats Offer Promising Ideas for Changing Immigration Enforcement
Never Seen Risk Like This Before in My Career
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

Between each of our vertebra is a shock-absorbing spinal disc, which consists of a rubbery exterior known as the annulus and a jellylike "filling" called the nucleus. Herniated discs occur when a tear in the annulus allows some of the nucleus to leak out and bulge into adjacent nerves, irritating them.
Surgical treatments typically involve either removing the protruding nucleus and then sewing up the tear in the annulus – leaving the disc "deflated" – or refilling the disc with a replacement material, which may eventually also leak out through the unpatched hole.
Led by Cornell University's Prof. Lawrence Bonassar, scientists from the US and Italy have developed a procedure that combines the refilling with the patching. It's performed after a discectomy, which is the standard process for removing the leaked nucleus material.