>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Joseph Makin at the University of California, San Francisco, and his colleagues used deep learning algorithms to study the brain signals of four women as they spoke. The women, who all have epilepsy, already had electrodes attached to their brains to monitor seizures.
Each woman was asked to read aloud from a set of sentences as the team measured brain activity. The largest group of sentences contained 250 unique words.
The team fed this brain activity to a neural network algorithm, training it to identify regularly occurring patterns that could be linked to repeated aspects of speech, such as vowels or consonants. These patterns were then fed to a second neural network, which tried to turn them into words to form a sentence.
Each woman repeated the sentences at least twice, and the final repetition didn't form part of the training data, allowing the researchers to test the system.
Each time a person speaks the same sentence, the brain activity associated will be similar but not identical. "Memorising the brain activity of these sentences wouldn't help, so the network instead has to learn what's similar about them so that it can generalise to this final example," says Makin. Across the four women, the AI's best performance was an average translation error rate of 3 per cent.