>
"American NIGHTMARE!" Ron Paul + O'Leary vs de Blasio | Mamdani + Trump's Big Beau
The story told as only Alex Jones can! P Diddy's Acquittal Of Serious Charges...
IRAN: Everything You Need To Know But Were Too Afraid of the Israel Lobby To Ask
This Is Israel's War - Not Our War
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Joseph Makin at the University of California, San Francisco, and his colleagues used deep learning algorithms to study the brain signals of four women as they spoke. The women, who all have epilepsy, already had electrodes attached to their brains to monitor seizures.
Each woman was asked to read aloud from a set of sentences as the team measured brain activity. The largest group of sentences contained 250 unique words.
The team fed this brain activity to a neural network algorithm, training it to identify regularly occurring patterns that could be linked to repeated aspects of speech, such as vowels or consonants. These patterns were then fed to a second neural network, which tried to turn them into words to form a sentence.
Each woman repeated the sentences at least twice, and the final repetition didn't form part of the training data, allowing the researchers to test the system.
Each time a person speaks the same sentence, the brain activity associated will be similar but not identical. "Memorising the brain activity of these sentences wouldn't help, so the network instead has to learn what's similar about them so that it can generalise to this final example," says Makin. Across the four women, the AI's best performance was an average translation error rate of 3 per cent.