>
Obama Impeachment LIVE | US BIGGEST ARREST SHOCKS Nation! Tulsi DROPS BOMBSHELL
Will the Next First Turning Be to Technocracy?
Business Insider: Factcheck Your AI Stories Or Else
BREAKING EXCLUSIVE: Judge Delays Tina Peters Justice, Orders Colorado AG to Answer...
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Generating Electricity Managed by Intelligent Nuclear Assets (GEMINA) program as $27 million in funding. GEMINA is accelerating research, discovery, and development of new digital technologies that would produce effective and sustainable reductions in O&M costs.
MIT-led teams will collaborate with leading industry partners with practical O&M experience and automation to support the development of digital twins. Digital twins are virtual replicas of physical systems that are programmed to have the same properties, specifications, and behavioral characteristics as actual systems. The goal is to apply artificial intelligence, advanced control systems, predictive maintenance, and model-based fault detection within the digital twins to inform the design of O&M frameworks for advanced nuclear power plants.
There are three MIT teams and six non-MIT teams in the GEMINA program.
1. NSE professors Emilio Baglietto and Koroush Shirvan will collaborate with researchers from GE Research and GE Hitachi. The GE Hitachi BWRX-300, a small modular reactor designed to provide flexible energy generation, will serve as a reference design. BWRX-300 is a promising small modular reactor concept that aims to be competitive with natural gas to realize market penetration in the United States. The team will assemble, validate, and exercise high-fidelity digital twins of the BWRX-300 systems. Digital twins address mechanical and thermal fatigue failure modes that drive O&M activities well beyond selected BWRX-300 components and extend to all advanced reactors where a flowing fluid is present.