>
Democracy Cannot Lead to Self-Governance
BREAKING NOW: Learn Why MSM Is Suddenly Admitting That Smart Light Bulbs & Almost...
Donald Trump Doesn't Understand International Politics
The 1775 Two Step That Led to American Independence
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
The Generating Electricity Managed by Intelligent Nuclear Assets (GEMINA) program as $27 million in funding. GEMINA is accelerating research, discovery, and development of new digital technologies that would produce effective and sustainable reductions in O&M costs.
MIT-led teams will collaborate with leading industry partners with practical O&M experience and automation to support the development of digital twins. Digital twins are virtual replicas of physical systems that are programmed to have the same properties, specifications, and behavioral characteristics as actual systems. The goal is to apply artificial intelligence, advanced control systems, predictive maintenance, and model-based fault detection within the digital twins to inform the design of O&M frameworks for advanced nuclear power plants.
There are three MIT teams and six non-MIT teams in the GEMINA program.
1. NSE professors Emilio Baglietto and Koroush Shirvan will collaborate with researchers from GE Research and GE Hitachi. The GE Hitachi BWRX-300, a small modular reactor designed to provide flexible energy generation, will serve as a reference design. BWRX-300 is a promising small modular reactor concept that aims to be competitive with natural gas to realize market penetration in the United States. The team will assemble, validate, and exercise high-fidelity digital twins of the BWRX-300 systems. Digital twins address mechanical and thermal fatigue failure modes that drive O&M activities well beyond selected BWRX-300 components and extend to all advanced reactors where a flowing fluid is present.