>
Engineered backdoors in technology, have given intelligence agencies unfettered powers.
AI-Powered Robots Plant Trees in China's Deserts
Judge Temporarily Blocks DOJ From Using Evidence Proving James Comey's Guilt
Offer Royale: Paramount-Netflix Bidding War For Warner Bros Heats Up In A Blockbuster Showdown
Build a Greenhouse HEATER that Lasts 10-15 DAYS!
Look at the genius idea he came up with using this tank that nobody wanted
Latest Comet 3I Atlas Anomolies Like the Impossible 600,000 Mile Long Sunward Tail
Tesla Just Opened Its Biggest Supercharger Station Ever--And It's Powered By Solar And Batteries
Your body already knows how to regrow limbs. We just haven't figured out how to turn it on yet.
We've wiretapped the gut-brain hotline to decode signals driving disease
3D-printable concrete alternative hardens in three days, not four weeks
Could satellite-beaming planes and airships make SpaceX's Starlink obsolete?

The Generating Electricity Managed by Intelligent Nuclear Assets (GEMINA) program as $27 million in funding. GEMINA is accelerating research, discovery, and development of new digital technologies that would produce effective and sustainable reductions in O&M costs.
MIT-led teams will collaborate with leading industry partners with practical O&M experience and automation to support the development of digital twins. Digital twins are virtual replicas of physical systems that are programmed to have the same properties, specifications, and behavioral characteristics as actual systems. The goal is to apply artificial intelligence, advanced control systems, predictive maintenance, and model-based fault detection within the digital twins to inform the design of O&M frameworks for advanced nuclear power plants.
There are three MIT teams and six non-MIT teams in the GEMINA program.
1. NSE professors Emilio Baglietto and Koroush Shirvan will collaborate with researchers from GE Research and GE Hitachi. The GE Hitachi BWRX-300, a small modular reactor designed to provide flexible energy generation, will serve as a reference design. BWRX-300 is a promising small modular reactor concept that aims to be competitive with natural gas to realize market penetration in the United States. The team will assemble, validate, and exercise high-fidelity digital twins of the BWRX-300 systems. Digital twins address mechanical and thermal fatigue failure modes that drive O&M activities well beyond selected BWRX-300 components and extend to all advanced reactors where a flowing fluid is present.