>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Currently under development at Finland's University of Oulu, the prototype portable X-ray machine measures just 50 by 50 by 130 cm (19.7 by 19.7 by 51.2 in).
Not only is it much smaller than conventional X-ray systems, but because it incorporates built-in radiation shielding, it doesn't have to kept in a lead-lined room, nor does it have to be operated from a separate area. In fact, it utilizes a video screen to guide patients through the process, showing them how and where to place the injured appendage. It then automatically takes the X-rays, and tells the user if a break is detected.
Its instructions – and its imaging voltage – are currently set up for X-raying bones in the palm and ankle. More regions will be added as the system is developed further.
The idea behind the technology is that the relatively inexpensive machines could be set up at locations such as ski resorts or medical clinics, where patients could self-check their injuries to see if a bone was indeed broken. This would reduce the demands placed on larger, pricier, more sophisticated X-ray systems (and their operators), increasing their availability for more important tasks.