>
DRINK 1 CUP Before Bed for a Smaller Waist
Nano-magnets may defeat bone cancer and help you heal
Dan Bongino Officially Leaves FBI After One-Year Tenure, Says Time at the Bureau Was...
WATCH: Maduro Speaks as He's Perp Walked Through DEA Headquarters in New York
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...

Above – Illustration of a pair of silicon high contrast gratings that can be used to guide visible light on a chip with low losses despite large absorption by the silicon material.
Nanostructures were used to make high contrast gratings. Such a grating consists of nanometer-sized 'posts' lined up to form a 'fence' that prevents light from escaping. The posts are 150 nanometers in diameter and are spaced so that light passing through them interferes destructively with light passing between them. Destructive interference is a phenomenon where waves – including electromagnetic waves such as visible light – that oscillate out of sync cancel each other out. This way, no light can "leak" through the grating and most of it gets reflected back inside the waveguide.
The next step is to engineer the efficient coupling of the light out of the waveguides into other components. That's a crucial step in our research, with the ultimate goal of integrating the all-optical transistors into integrated circuits that would be able to perform simple logic operations.