>
A $31 million Bitcoin donation to Silk Road founder Ross Ulbricht...
Joe Rogan Experience #2334 - Kash Patel
Trump announces trade agreement with China: 'We have the deal'
Stephen Miller goes scorched earth for Trump's BBB…
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
Above – Illustration of a pair of silicon high contrast gratings that can be used to guide visible light on a chip with low losses despite large absorption by the silicon material.
Nanostructures were used to make high contrast gratings. Such a grating consists of nanometer-sized 'posts' lined up to form a 'fence' that prevents light from escaping. The posts are 150 nanometers in diameter and are spaced so that light passing through them interferes destructively with light passing between them. Destructive interference is a phenomenon where waves – including electromagnetic waves such as visible light – that oscillate out of sync cancel each other out. This way, no light can "leak" through the grating and most of it gets reflected back inside the waveguide.
The next step is to engineer the efficient coupling of the light out of the waveguides into other components. That's a crucial step in our research, with the ultimate goal of integrating the all-optical transistors into integrated circuits that would be able to perform simple logic operations.