>
Testing My First Sodium-Ion Solar Battery
3D Solar towers boost electricity production by around 50%
Promising results for dynamic wireless charging in real-world road tests
Civil War!! In 2 Days Food Stamps Run Out and America is in Trouble | Redacted
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

This concept is similar to a standard balloon, whereas a balloon uses helium or hydrogen to displace air and provide lift, a vacuum airship uses a rigid structure to maintain a vacuum to displace air and provide lift.
A vacuum airship made of a homogenous material cannot withstand the atmospheric pressure on Earth for any material humans have yet discovered, which can be proven using the critical buckling load of a sphere. However, from an initial analysis of the vacuum airship structure and relationship to atmospheric conditions, Mars appears to have an atmosphere in which the operation of a vacuum airship would not only be possible, but beneficial over a conventional balloon or dirigible. In addition, a multi-layer approach, in conjunction with a lattice, would circumvent the buckling problems of a single homogenous shell. The lattice used to support the two layers of the vacuum airship shell can be made, using modulation of the lengths of the members, to fit the curvature of the vacuum airship precisely by following an atlas approach to the modulation.