>
Remember back in 2022 when John Bolton "slipped" & admitted that he's helped plan Coup
What Are The Real Reasons Behind Washington's Latest Show Of Force Against Venezuela?
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
SpaceX launches Space Force's X-37B space plane on 8th mystery mission (video)
This New Bionic Knee Is Changing the Game for Lower Leg Amputees
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Venus Aerospace Hypersonic Engine Breakthroughs
Chinese Scientists Produce 'Impossible' Steel to Line Nuclear Fusion Reactors in Major Break
1,000 miles: EV range world record demolished ... by a pickup truck
Fermented Stevia Extract Kills Pancreatic Cancer Cells In Lab Tests
This concept is similar to a standard balloon, whereas a balloon uses helium or hydrogen to displace air and provide lift, a vacuum airship uses a rigid structure to maintain a vacuum to displace air and provide lift.
A vacuum airship made of a homogenous material cannot withstand the atmospheric pressure on Earth for any material humans have yet discovered, which can be proven using the critical buckling load of a sphere. However, from an initial analysis of the vacuum airship structure and relationship to atmospheric conditions, Mars appears to have an atmosphere in which the operation of a vacuum airship would not only be possible, but beneficial over a conventional balloon or dirigible. In addition, a multi-layer approach, in conjunction with a lattice, would circumvent the buckling problems of a single homogenous shell. The lattice used to support the two layers of the vacuum airship shell can be made, using modulation of the lengths of the members, to fit the curvature of the vacuum airship precisely by following an atlas approach to the modulation.