>
Trump's Bold 2016 Campaign Talking Point That Ignited Nationwide Controversy
Warfare is beginning to look more like a science fiction film.
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Wi-Fi Can be Used to Influence Brainwaves, Has Potential for Hypnotic Effects and Social Engineering
Startups Like Neuralink And Science Corp. Are Aiming To Help The Blind See Again
An insect-inspired flying robot with wings that buzz thanks to a new type of electric 'muscle' has been developed by British scientists.
The prototype weighs about 0.01lbs (5g), has a wing span of 5.9 inches (15cm) and can fly at 1.6mph.
It is hoped that one day the robot will be able to look for survivors in disaster zones such as collapsed buildings, monitor hard-to-reach infrastructure and pollinate crops.
Researchers at Bristol University said its wings are so efficient that they actually provide more power than an insect muscle of the same weight.
'It's very challenging to beat nature,' Dr Tim Helps, lead author of the study, told MailOnline.
'If we can produce more power than insect muscle, it means that we can potentially have better performance than an insect — which is really exciting.'
He added: 'It's very challenging because nature does such an amazing job.'
Until now, typical micro flying robots have used motors, gears and other complex transmission systems to achieve the up-and-down motion of the wings.
However, researchers involved in the study said this had added complexity, weight and undesired dynamic effects.
Instead, after taking inspiration from bees and other flying insects, they created an artificial muscle system called the liquid-amplified zipping actuator (Laza), which achieves wing motion using no rotating parts or gears.
The wing itself acts like a negatively charged electrode, while above and below it are two positively charged electrodes.