>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Combustion engines are tried and true, and however angry they might look and sound in a top-fuel dragster or space rocket booster, the combustion process of oxidizing fuel in air is relatively slow and predictable. Detonation, on the other hand, is as chaotic and destructive as it sounds. It's how most bombs work; you take an explosive fuel and hit it with a jolt of energy, and the chemical bonds holding each molecule together break apart, releasing wild amounts of energy in a shockwave that expands at supersonic speed.
NASA, along with many other groups, wants to harness these explosions for a couple of key reasons. Firstly, detonation engines have a considerably higher theoretical level of efficiency than combustion engines, perhaps as much as 25%; they should be able to produce more thrust using less fuel and a smaller rocket. In the engineering and economics of space flight, that means cheaper launches, more billable payload, and greater distances.