>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

The genesis for such wild imagination is the recent invention of a polymer-assembly robot that flies by wind, is controlled by light, and inspired by the dandelion seeds we used to blow into the wind when we were young.
A prototype has already been developed by Tampere University's "Light Robots" group, who use smart materials to create soft-bodied robots capable of moving themselves around via environmental stimuli rather than hard circuitry.
Light enough to be carried by the winds, the robot could be a game changer for almonds, apples, and other flowers in the face of declining pollinator populations.
"This would have a huge impact on agriculture globally since the loss of pollinators due to global warming has become a serious threat to biodiversity and food production," explains Hao Zeng, the group leader.
A backdrop to this invention is the development of stimuli-responsive polymers which have brought about a wealth of opportunities for next-generation, small-scale, and wirelessly controlled soft-bodied robots.
For some time now, engineers have known how to use these materials to make small robots that can walk, swim, and jump. Last year GNN reported on these soft robotics in the medical field—swarms of robots that can clean teeth, deliver targeted medication, or break up blood clots.