>
FDA Chief Says No Solid Evidence Supporting Hepatitis B Vaccine At Birth
Evergreen, Colorado: Another Killing Zone in America
Trump Cryptically Writes "Here We Go!" In Reaction To Russia-Poland Drone Incident, Oil Sp
Qatar Says It Reserves Right To Retaliate Against 'Barbaric' Netanyahu
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Storing solar energy cheaply and efficiently is a key component for the future of renewable energy. Even though lithium ion batteries are great for solar power, they can still be costly and, depending on the chemistry, there can be safety concerns. There are ways we can store solar energy more directly though … and one of those is heat. For instance, concentrated solar energy plants can use that heat for producing electricity, cement, steel, green hydrogen, or anything else that needs high temperatures. Or for storing that thermal energy for days. A recent breakthrough could allow us to store solar energy directly into a liquid for up to 18 years. How's it work? And could this be a viable path forward for solar energy storage? Let's see if we can come to a decision on this.