>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
By current estimates, there are about 8 million tonnes of known reserves of uranium on land. That's enough to fuel the world's nuclear reactors for centuries based on current technology, but in the sea there is an estimated 4.5 billion tonnes in the form of dissolved uranyl ions. If we could extract this economically, it would vastly extend our energy future. Even better, as uranium is removed from seawater, more would leach in from the Earth's crust, providing our descendants with over a billion years worth of nuclear fuel at any projected scale.
Led by Rui Zhao and Guangshan Zhu, the Northeast Normal team is looking at a novel way to extract these radioactive riches. Extraction isn't a new idea. In the past, other researchers have looked at using polymer mats, conductive fibers, and other methods. Now, Northeast Normal is looking at a flexible cloth woven from carbon fibers coated with two specialized monomers and treated with hydroxylamine hydrochloride. The porous cloth provides tiny pockets for the amidoxime, which captures the uranyl ions.
The capture itself seems almost like a school chemistry experiment in its simplicity. The cloth was placed in either seawater or a solution of uranyl ions where it acted as a cathode. Meanwhile, a graphite anode was added. When a current was run between the two, bright yellow, uranium-based precipitates accumulated on the cathode cloth in the same way that bronze coats a baby shoe as a parental memento.
In tests, the team reported extracting 12.6 mg of uranium per gram of water over 24 days, which is a higher amount and at a faster rate than other materials tested or simply allowing uranium to naturally accumulate on cloth.