>
SEMI-NEWS/SEMI-SATIRE: July 6, 2025 Edition
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Mount Everest has microplastic contamination. Our drinking water and food, especially processed foods in single-use packaging, are contaminated with microplastics. Recent studies have found microplastics in our blood, lungs, liver, and kidneys ... They've even been found in the placentas of unborn babies.
Studies on the adverse health effects of microplastics in the human body have only recently been done. Respiratory, gastrointestinal, endocrine, developmental and reproductive issues, and even cancers are starting to be linked to the consumption and inhalation of microplastics. Micro and nanoplastics are inescapable. But now researchers from the University of Missouri have developed a relatively simple and safe method of extracting over 98% of nanoplastic particles from water.
Using non-toxic, hydrophobic natural ingredients, researchers were able to create a liquid solvent that floats atop water like oil. When emulsified into the water and then allowed to reseparate, the solvent will then float back to the surface carrying more than 98% of the nanoplastic contaminants back to the surface with it, where it can simply be skimmed off the water. Given its hydrophobic nature, there's little risk of leaving further contamination from the eutectic solvent behind.
"Our strategy uses a small amount of designer solvent to absorb plastic particles from a large volume of water," says Gary Baker, an associate professor in Mizzou's Department of Chemistry. "Currently, the capacity of these solvents is not well understood. In future work, we aim to determine the maximum capacity of the solvent. Additionally, we will explore methods to recycle the solvents, enabling their reuse multiple times if necessary."
We currently have some ways of removing microplastics from our drinking water, depending on the size. Basic activated carbon filters – like you'd find in a Britta – aren't specifically made to remove them, but are fairly effective at removing anything larger than five microns in size. Multi-stage sediment filters with a one-micron pore size are quite good. Reverse osmosis, which squeezes water through pores as small as one ten thousandth of a micron is one of the very best methods for removing contaminants of any sort from water – however, these become clogged and need to be cleaned regularly. Distilling water is nearly 100% effective, but also strips away any healthy minerals that our bodies need.