>
Fearing US Reprisals, Mexico Halts Oil Shipment To Cuba
Iran Executes Suspected Israeli Spy In High-Stakes Act Of Defiance
TikTok Users Report Trouble Posting About Epstein, ICE, Days After Company Finalizes Sale...
Chaos Is Spreading Like Cancer. What Happens Next?
Researchers who discovered the master switch that prevents the human immune system...
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

By promoting DNA demethylation, vitamin C enhances the proliferation of cells that result in thicker and healthier skin. This discovery opens new avenues to genetically revive aging skin.
A collaborative team of researchers, led by Dr Akihito Ishigami at the Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), has discovered how vitamin C (VC) stimulates a mechanism that promotes healthy skin growth, potentially being able to restore the thickness of the epidermis – our protective, and visible, outermost layer of skin, which becomes increasingly compromised as we age.
"VC seems to influence the structure and function of epidermis, especially by controlling the growth of epidermal cells," said Ishigami. "In this study, we investigated whether it promotes cell proliferation and differentiation via epigenetic changes."
Using a 3D human skin model in the lab, the researchers added VC at 1.0 and 0.1 mM – tiny concentrations similar to what would be transported from the bloodstream into the epidermis – to it. By day seven, the epidermis was thicker, but the outermost layer of dead cells (the stratum corneum) was still stable. Then, by day 14, this layer had thinned, but the epidermis had continued to thicken, indicating that VC was having a deeper cellular impact. Tissue analysis showed significant higher number of not just cells but ones expressing the Ki-67 protein, a marker of cell proliferation.
Upon further investigation, the researchers uncovered how VC was activating genes linked to cell growth through the process of DNA demethylation. In general, DNA demethylation is activated when cells need repairing and occurs when DNA has its chemical "tag" removed so genes can be switched on without changing fundamental genetic sequences. Removing the tag here allows for these skin cells to ramp up production.
So VC facilitated the removal of these tags that silence the genes driving skin cell growth. This isn't a surface-level mechanism, either; the epidermis is mostly made up of keratinocytes, which are cells formed in many layers below that migrate to the surface. Stimulating their growth genetically means more form that protective epidermis layer, resulting in thicker, better structured skin than what our bodies naturally produce as we age.