>
Pentagon To Send 200 Troops to Nigeria
Trump Says He May Send Second Aircraft Carrier to Middle East To Prepare for Potential Attack...
A Market Crash and Recession Are Bullish, Not Bearish
What Are They Still Hiding? New Epstein Questions Point to a Much Bigger Cover-Up
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

It consists of a piezo stack that produces mass fluctuations, which in turn can lead to net time-averaged thrusts. So far, thrusts predictions had to use an efficiency factor to explain some two orders of magnitude discrepancy between model and observations. Here (M Tajmar) presents a detailed 1D analytical model that takes piezo material parameters and geometry dimensions into account leading to correct thrust predictions in line with experimental measurements. Scaling laws can now be derived to improve thrust range and efficiency. An important difference in this study is that only the mechanical power developed by the piezo stack is considered to be responsible for the mass fluctuations, whereas prior works focused on the electrical energy into the system. This may explain why some previous designs did not work as expected. The good match between this new mathematical formulation and experiments should boost confidence in the Mach effect thruster concept to stimulate further developments.