>
Dr David Martin - I'm done being polite
Palantir Wants to Be a Lifestyle Brand
Britain Is Manifesting Nigel Farage as Its Next Prime Minister
Max Blumenthal: Charlie Kirk's Story FALLS APART
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
However, as these components are shrunk ever further, fundamental limits to their dimensions are dictated by the wavelength of light itself. Now researchers at ETH Zurich claim to have overcome this limitation by creating both the world's smallest optical switch using a single atom, and accompanying circuitry that appears to break the rules by being smaller than the wavelength of the light that passes through it.
The exponential growth of data and its accompanying reception and transmission around the world, has meant that the severe bandwidth limitations of copper-based networks have been largely eschewed in favor of high-capacity optical systems. And, as more and more photonics-based electronic devices and processors come on line, almost all conventional wiring will follow suit and eventually be replaced by optical fibers, waveguides, and other light-carrying conduits. Some future connecting devices, however, will still require the conversion of electrical signals to light, as do current data transmission systems, and it is one of these interim components – the modulator – that researchers at ETH Zurich are seeking to miniaturize.