>
Pentagon To Send 200 Troops to Nigeria
Trump Says He May Send Second Aircraft Carrier to Middle East To Prepare for Potential Attack...
A Market Crash and Recession Are Bullish, Not Bearish
What Are They Still Hiding? New Epstein Questions Point to a Much Bigger Cover-Up
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

Since drag is proportional to the density of the surrounding fluid, the drag on a super-cavitating projectile is dramatically reduced, allowing supercavitating projectiles to attain higher speeds than conventional projectiles. In water , a rough approximation predicts that a supercavitating projectile has 200,000 times less skin friction than a normal projectile. The potential applications are impressive.
Here we will describe the advances that the chinese researchers have made towards practical supercavitating submarines and the need for molten salt nuclear reactors to power them. Molten salt nuclear reactors are under commercial development in Canada, China and other countries. Molten salt reactors could achieve 50 times the power density of current nuclear reactors used in nuclear submarines.
A 650 MW thermal integrated molten salt reactor with a supercritical CO2 turbine would have about 400 MWe of power with about 200 tons of weight. This would be about 2 kW per kg.